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AFIT-ENS-13-M-03 

Abstract 

 

This thesis develops an algorithm to address a special case of the Vehicle Routing 

Problem. The algorithm developed is decompositional with two components. The first 

component is based upon Dijkstra’s algorithm and is used to simplify the routing 

component of processing. The second component is based upon the priority rule 

heuristics used in scheduling job shop problems for parallel machines. 

The VRP solved is subject to time windows and capacity constraints on vehicles 

and offloading. The VRP is multimodal. The objective function for the problem is the 

sum of all vehicles used, multiplied by their respective cost modifiers. Shipments are 

required to travel entirely on a single mode.  

The data input consists of a network and shipping requirements. The network is 

subjected to Dijkstra’s. Dijkstra’s returns a simplified network of shortest paths. This 

simplified network, along with the shipping requirements, is subjected to the scheduling 

heuristic. The heuristic assigns as many of the shipments as possible away from the 

currently minimizing mode. This determines which shipments must be processed on the 

minimizing mode. It determines how many vehicles are required to carry those 

shipments. Finally, any remaining capacity is assigned. This process is repeated for each 

mode.  
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VEHICLE MINIMIZATION FOR THE MULTIMODAL PICKUP AND DELIVERY 

PROBLEM WITH TIME WINDOWS 

 

I. Introduction 

 

The General Problem 

 The algorithm developed here addresses a special case of the VRP. The VRP 

considered is multimodal with time constraints. It is also subject to capacity constraints, 

both on individual vehicles and on offloading at each node. This makes the problem 

broadly equivalent to the general formulation of the M++RP, or multimodal 

multicapacitated vehicle routing problem.  However, the objective function used is based 

upon the total numbers of vehicles of each type used. Consequently, the problem can also 

be considered to be a special case of the Fleet Size and Mix Problem. 

 The primary issue in solving any VRP is computational complexity. This is even 

more true when addressing the M++RP, or the FSMP. The computational complexity is 

exacerbated by the size of the problem and by the number of options available. It is not 

reduced by the constraints. In fact, the constraints may increase the computational 
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complexity of the problem. The constraints may cause this issue by creating interference 

between the shipments in their processing at specific locations or on specific vehicles. 

 The FSMP has three specific issues related to computational complexity, which 

substantially expand the problem. Firstly, the FSMP does not directly allow for tradeoff-

costing, either between particular days or between vehicle types. We concern ourselves 

with the total number of vehicles used and not with the vehicles used on any particular 

day. Because of this, vehicles can be considered ‘free’ with respect to the objective 

function except if their assignment would cause more vehicles to be required. It is not 

always possible to infer directly how the assignment of one vehicle might affect the 

assignment of later vehicles. Because of this, the costs of assigning vehicles are generally 

unavailable, directly, until the latter parts of the assignment. 

 Secondly, in the FSMP, we do not know the number of vehicles available for any 

given mode. This makes capacitating flow on any given mode difficult. It also makes it 

difficult to determine the limitations on the number of shipments any given mode is 

capable of carrying. Without knowing what a certain mode can carry, it is difficult to 

determine what the other modes must carry. 

 Thirdly, the FSMP generally requires multiple iterations to solve. We are seeking 

the feasible solution using the fewest vehicles. The intuitive approach to this solution is 

to determine a number of vehicles which is obviously sufficient. We could then reduce 

the number of vehicles, checking to ensure feasibility with each reduction. This is 

functional because it allows the determination of each mode’s capacity interactively with 

the other modes. All methods of solution must somehow take this process into account. 
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Generally, this means correcting an original solution, which of course requires many 

solutions of the VRP for a single FSMP solution. 

 

Algorithm Overview 

 The algorithm developed in this thesis is decompositional. It handles the TPFDD 

by splitting it into two data-components. The first data component is the network, which 

is processed by Dijkstra’s algorithm.  Dijkstra’s returns a simplified version of this 

network. The second data component is the shipping requirements. The shipping 

requirements and network are then used as input for the second part of the algorithm. 

This part of the algorithm is the iterative scheduling heuristic. It efficiently allocates the 

shipments included in the shipping requirements to vehicles associated with paths on the 

simplified network. This assignment is made so as not to violate any of the constraints 

associated with the network, vehicles, or shipments. 

 

Figure 1. Overview of Algorithm 
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 Dijkstra’s algorithm is well-researched, very fast, and very reliable. In this 

instance it has only a small, conventional role. It seeks out the shortest path from each 

node included in the original network to each other node included in the original network. 

If we assume that the shortest paths are the best paths to use, we may use these paths in 

place of a full routing algorithm. While the paths are unlikely to be ideal, they 

approximate the ideal.  

 The second component of the algorithm is the iterative scheduling heuristic 

mentioned above. It iterates once for each mode. First, it determines the cheapest mode 

which is capable of carrying each shipment. At this stage, the algorithm assumes that the 

shipment is immediately loaded onto the mode on arrival, and when delivered, unloading 

capacity is immediately available. After this stage, the algorithm determines whether the 

number of shipments assigned to each mode is too great to be handled by the unloading 

capacity of that mode. Any excess shipments are moved to a higher-cost mode. 

 Finally, the number of vehicles required to carry any shipments assigned to the 

most expensive mode is determined. Then, any excess capacity is used to deliver 

shipments which were previously assigned to a cheaper mode. Any shipments which are 

assigned to the most expensive mode are eliminated from the overall shipment list. The 

process then repeats, disincluding the newly minimized mode. In the next iteration, the 

reduced shipment list is used. 

 

Scope of Research 

 The purpose of this research is to develop an algorithm capable of solving a large 

instance of the multi-modal FSMP. The algorithm will emphasize deadlines and arrival 



 

5 
 

dates as priority constraints in its solution. It will minimize vehicles in order of cost, 

ensuring that the most expensive vehicles receive priority. Each shipment will be shipped 

entirely on a single mode. Real-world aspects of the problem which are included in this 

solution include vehicle and offloading capacity and variation in path lengths. 

 

Issues, Needs, and Limitations 

 The research is limited by its inability to model the real world with precision. 

Many constraints are applicable to the real-world problem but beyond the scope of the 

algorithm. This is generally due to added computational complexity. As a consequence, 

the results given by the algorithm can only provide a guide to the number of vehicles 

ultimately required for any given TPFDD and network. 

 A major limitation of the system as it stands is the removal of constraints 

regarding which modes can carry certain shipments. Certain shipments, according to a 

TPFDD, are locked into a particular transportation type. This algorithm does not allow 

for such limitations, but instead assumes that all shipments can, at least theoretically, be 

carried by any mode. 

 Another major limitation is the lack of multimodal solutions that is apparent in the 

algorithm. Due to simplifying steps taken early in processing, the algorithm cannot 

address the possibility of efficient or effective multimodal solutions. However, it is likely 

that such solutions can be generated by slight modifications to the final solution set, as 

with a genetic algorithm or Tabu search. 
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II. Literature Review 

 

Chapter Overview 

 The problem being reviewed in this text is a special case of the Dial-A-Ride 

problem, itself a special case of the Vehicle Routing Problem, the M++RP (Moccia et al, 

2008) The Dial-A-Ride problem is a subset of the general pick-up and delivery problem, 

as defined in Savelsbergh and Sol’s “The General Pick-up and Delivery Problem” 

(Savelsbergh et al, 2005) but the pickup and delivery problem is itself a refinement of the 

“Truck Dispatching Problem” originally proposed by Dantzig and Ramser in their 

eponymous paper. (Dantzig, 1959) 

 The Vehicle Routing Problem has received a great deal of attention over the 

years, but the particular refinement being dealt with in this paper is substantially less 

studied. In particular, the M++RP deals with multi-modal, multi-time constraints, and 

multiple capacity constraints, in addition to the constraints more usually associated with 

the VRP, but without depots. (Moccia, 2008: 2) 

 The problem can, however, also be approached as a special case of the sequential 

machine scheduling problem, for non-homegenous machines, or the Q-machine 

scheduling problem. While the problem can be viewed as such, the more interesting 

applications of Q-machine techniques for this problem relate to the use of the Q-machine 

methods for solving the ‘scheduling’ component of a decomposed problem, and so that is 

where our study will focus. 
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 This segment of the paper will first review the Vehicle Routing problem solution 

techniques, emphasizing the state of exact algorithmic solutions, and the decomposition 

and heuristic mixed methods for achieving large-scale near-optimal solutions, largely in 

order to clarify the difficulty of achieving a reasonably accurate solution in a short time-

scale on a problem with such great computational complexity. Then we review the 

techniques used in Q-machine scheduling as approaches to the solution of the 

decomposed problem. 

 

Vehicle Routing Problem Overview 

 The vehicle routing problem is the problem consisting of finding an optimal route 

for either one or multiple vehicles between multiple locations, each of which will 

generally place a load on the vehicles, to be transported to a second location. This second 

location may be the depot of the truck, in simpler problems, but is often a delivery 

location. In this case, the problem becomes the Vehicle Pick-up and Delivery problem; 

more specifically, the problem may be constrained to require that the pick-ups and 

deliveries occur according to a certain schedule, in which case the problem becomes the 

Vehicle Pick-up and Delivery Problem with Time Windows. 

 

Dial-A-Ride Problem Summary 

 The most studied problem class which closely resembles the one discussed in this 

paper is known generally as the ‘Dial-A-Ride’ Problem. The Dial-A-Ride problem is a 

special case of the Vehicle Pick-Up and Delivery Problem with Time Windows, with 

vehicles operating from and returning to an established depot.  The problem is subject to 
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vehicle capacity constraints and constraints on the maximum amount of time a customer 

may ride in the vehicle.  

 The Dial-A-Ride problem differs from the studied problem in several particulars. 

The first is that the Dial-A-Ride problem does not generally have to deal with 

infrastructure constraints on loading or offloading of shipments. This allows the problem 

to be simplified in significant ways, since a node cannot be occupied by a vehicle’s 

unloading, and unusable to other vehicles, from other paths. The vehicles, however, may 

interfere with one another, if the capacity constraints on the arcs are used to create that 

effect. The second is that the Dial-A-Ride problem generally deals with homogeneous 

vehicles, rather than the multimodal approach required in dealing with the studied 

problem. This creates additional computational complexity, for two reasons. The first is 

that the various vehicles can be traded off, one against the other, providing another aspect 

of complexity, rather than simply requiring the addition of more homogeneous vehicles 

(as in the Dial-A-Ride problem) the second constraint is that the path from any given 

node to any other node is unique in the Dial-A-Ride problem, as generally understood, 

rather than having different distances and speeds for different modes. Finally, perhaps the 

biggest difference between the Dial-A-Ride problem and the problem studied here is the 

problem of scale. The Dial-A-Ride problem generally deals in vehicles which are each 

capable of handling multiple loads, whereas the problem studied here generally deals in 

loads which will require multiple vehicles. Hence, in the Dial-A-Ride problem, the core 

issue is ensuring that the vehicles waste as little travel time as possible in getting as many 

loads as possible to as many locations as possible. For the studied problem, the emphasis 

must be on ensuring that the correct vehicles travel to the correct locations at the correct 
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times, so as to prevent conflicts, and most importantly ship them efficiently and cheaply. 

Finally, the Dial-A-Ride problem is often solved for a single vehicle, rather than for 

multiple vehicles. While the Dial-A-Ride problem can be extended easily from a single-

vehicle technique to a multi-vehicle solution under many circumstances, the particulars of 

the M++RP make it ineffective to extend from a single vehicle solution to multi-vehicles, 

especially since the particular problem being studied has as one of its primary objective 

function the use of minimum numbers of vehicles of each type. 

 

Dial-A-Ride Problem Solution Techniques 

The Dial-A-Ride problem is computationally complex, but also very fragile.  The 

number of variables involved means that the cost of accurate solutions to large-scale 

problems is often prohibitively high, and instead heuristic models must be used. 

Nonetheless, exact solutions can be found for the smaller problems, and have been. There 

has also been significant research into the extension of high-optimality techniques for 

problems after decomposition or alteration. However, the most interesting part of these 

techniques, for our purposes, is the development of decomposition and simplifying 

techniques to be used in conjunction with heuristics. For the Dial-A-Ride problem, it is 

often possible to simplify the problem to the point where an exact solution to the problem 

becomes feasible, even if the problem loses some fidelity in the process; for the M++RP 

problem, and more specifically, for the pragmatic instance of the M++RP problem being 

studied in this paper, simple decomposition will not result in an exactly solvable set of 

problems.  
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In 2004, Lu and Dessouky demonstrated a method for efficient generation of exact 

solutions to the Dial-A-Ride problem. The method was reliant upon an integer 

programming formulation of the problem, which was then solved using a simple branch 

and bound technique. It solved a problem consisting of 5 vehicles and 17 customers in 

under three hours.  This demonstrates the complexity of the problem, since using only 5 

vehicles and 17 customers generated that level of computational demand. The advantage 

of Lu and Dessouky’s innovation was that it added a level of softness to calculations 

regarding time and capacity constraints; however, even with these significant changes to 

the fundamental paradigm, the algorithm produced a relatively time-costly solution to a 

relatively small problem. (Lu et al, 2004) 

 Psaraftis demonstrated an exact algorithm for the solution of the Dial-A-Ride 

problem in Transportation Science, dealing with multiple vehicles. His technique 

provides an exact solution, using a dynamic programming algorithm, which efficiently 

and effectively calculated the best method for dispatching the vehicles, including route 

and schedule. Originally, Psaraftis developed the technique for a fairly simple variant, 

involving only one vehicle, but it was eventually extended to fairly complicated multi-

vehicle variants, including time constraints. The downside of Psaraftis’ approach is that it 

only optimizes with respect to total distance travelled. While total distance travelled is of 

a certain commercial interest, it is effectively irrelevant to our particular problem because 

of the scaling issue. In our problem, distance travelled is a concern secondary to our 

primary goal- as we know, ultimately, that our vehicles must travel from pickup to 

delivery, and then to pickup, rather than the interchanging sequence possible in the 

generic Dial-A-Ride problem. Equally, Psaraftis’ solution does not address the problem 
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of total vehicle number, which is what our algorithm is ultimately designed to address. 

(Psaraftis et al, 1980, 1983). 

 More useful to us in this instance is the generation of large-scale solutions to the 

Dial-A-Ride problem, which generally involves a heuristic approach. In most cases, the 

approach consists of a simplifying step, followed by an algorithm which approximates 

solutions to the reduced problem. In simpler cases, the problem is simply reduced directly 

using an analytical approach as in the generation of lower and upper bounds, and then 

solved exactly, or very closely. In large scale cases, the problem is decomposed and then 

approached with a heuristic technique, which provides a lower-quality but equally lower-

cost solution to the problem, and is often the only feasible approach to such a problem. 

 Baldacci et al begin by generating a specialized integer formulation of the 

problem, and then the dual of that form. They then use two heuristics in conjunction to 

achieve a near-optimal resolution of the dual, which in turn they use to determine which 

paths meet certain lower-bound and upper-bound criteria. They then remove all paths 

which are outside these bounds, and solve the reduced problem using an integer 

programming technique, or if the problem remains too large, attempt to resolve the size 

disparity using branch-and-bound techniques. (Baldacci, 2011)  

Sexton et al (Sexton, 1985) relied on Bender’s decomposition, separating the problem 

into a ‘routing’ component and a ‘scheduling’ component, and then solving with a 

heuristic. This technique is very efficient for the resolution of the Dial-a-Ride problem, 

because the paths are effectively independent of scheduling. If one can determine which 

paths are most efficient, then the problem should nearly always solve optimally subject to 

those paths, which allows for a drastic reduction in the complexity of the problem.  
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 While these decompositional techniques are effective in resolving some of the 

computational complexity of the problem, the decomposed problems remain very 

complex. Even after decomposition of the problem, we are left with a routing component 

equivalent to solving the shortest path problem for each of the customers, and a 

scheduling problem for parallel machines. While this technique is reasonable for 

resolving a problem involving only a few nodes, arcs, customers, and vehicles, handling 

the problem becomes substantially more difficult at larger scales. 

 An approach to multi-modality for a flexible number of vehicles was developed 

by Moccia et al, and focused upon the use of column generation heuristics. In this case, 

the formulation of the problem used ‘virtual networks’ to represent multimodal shipment 

transfers, developing false links with associated cost functions and time costs to represent 

the price of transferring from one mode to another at a given linkage. This methodology 

results in a reasonable solution for relatively large variants of the VRP. However, the 

algorithm used in the paper could only handle a relatively small system, though with 

great fidelity. (Moccia, 2008) 

 

Dial-A-Ride Discussion Summary 

 Solutions to the Dial-A-Ride problem are very rarely exact, depending instead on 

heuristic algorithms, often combined with decomposition, to solve even relatively simple 

problems. This is partly due to the limitations imposed by integer programming 

formulation, which the majority of the techniques use as a beginning for their solution. 

Any integer programming formulation must address tens of thousands, or even hundreds 

of thousands of variables, addressing which path, if any, each vehicle must be on at 
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which hour of which day, carrying what load. By extension, almost any solution to a 

large-scale Dial-A-Ride problem relies on a simplifying step, followed by powerful 

heuristics- and even so, will generally provide only a relatively slow solution to a 

relatively small problem. 

 For more details on the history of methodologies for studying the Vehicle Routing 

Problem, readers are recommended to Fifty Years of Vehicle Routing by Gilbert Laporte, 

in the 43rd issue of Transportation Science. 

 

Q-Machine Scheduling Summary 

 One approach to the M++RP problem is to reduce it to a scheduling component 

and a routing component. Once the shortest routes have been determined, the problem 

can then be handled as a scheduling problem, treating each of the modes for each path as 

a machine, with the vehicles treated as a global resource shared between the machines.  

 The transformation of the problem to a Q-machine scheduling problem reduces 

the complexity of scheduling significantly, but we are left with a highly computationally 

demanding problem nonetheless. At this stage, integer formulation of the resulting 

problem becomes more feasible and extensible to very small variants of the problem 

(Wagner, 1959) but the establishment of a more effective heuristic technique remains 

necessary for moderate to large scale scheduling problems. (Verma, 1999) In many cases, 

the most efficient method remains a scheduling ‘rule,’ modified as necessary by 

evolutionary algorithmic techniques to improve upon the initial  high quality solution. 

Because of the issues of interference between various shipments, even a minor shift in the 

location of a single shipment can have major cascading effects on the efficacy of the 



 

14 
 

solution as a whole. This is particularly true as the chosen metric, number of vehicles 

used, is dependent upon peak usage across the various vehicles, not upon the total usage 

of each vehicle type. 

 

Q-Machine Scheduling Heuristics 

 The simplified form of the M++RP that we are solving in this instance is 

equivalent to solving , or the parallel machine scheduling problem with 

machines with non-equal speeds, which are not dependent on the specific job, with setup 

times, in order to minimize tardiness, and then modifying that schedule in order to 

minimize m, while holding the previous objective value static. This variant of the 

problem has seen significant research because of its industrial significance, and 

consequently, many algorithms have been developed and applied to the problem. 

However, extending an exact solution to large instances of the problem remains elusive. 

 Most solutions to the formulation for large problems rely upon a prioritization 

heuristic, but unfortunately no single index appropriately addresses , and even if it 

did, the flexible nature of the number of machines means that while we could solve for 

weighted tardiness, we would not be able to prioritize reduction of machines; priority 

rules by definition assign a job to the first free machine, rather than attempting to reduce 

total machine numbers.  

For  specifically, priority rules are difficult to implement because of the 

complex nature of allocation. No specific variable, ratio, or difference can provide an 

efficient and effective index in all instances. Instead, the ATCS prioritization rule was 
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developed, as a combination of all of the factors which might cause a particular job to be 

the priority job for a particular freed machine, weighted dependent on the particular 

characteristics of the machines and jobs. 

 The Apparent Tardiness Cost with Setups is one heuristic which has been 

developed to handle . The ATCS calculates an index based upon the 

processing time, setup time, objective weights, due date tightness and range factors, and 

the severity of the setup time. When a job is completed, the job with the next highest 

index is assigned. The Apparent Tardiness Cost with Setups is very efficient at handling 

large scale problems, and is equally very effective at generating an optimal or near-

optimal solution. However, the ATCS does not effectively handle the in-parallel nature of 

the infrastructure constraints which are to be dealt with in the current problem, simply 

because those constraints are not factored into its system, and requires as part of its 

algorithmic structure the existence of a defined number of vehicles. Regardless, the 

ATCS is a very efficient approach to the large scale problems being handled in this 

instance for minimization of weighted tardiness. It is worth noting that in the seminal 

paper on the topic, Lee used a corrective simulated annealing technique to improve on the 

value of his final solution, relying on the ATCS rule only to generate a feasible high 

quality initial solution. (Lee et al, 1997) 

 Beyond the constructive algorithms, designed to generate a feasible and near-

optimal solution, we find refining algorithms, designed to improve on an existing 

schedule. These techniques generally apply a local search heuristic, moving from one 

good solution to similar solutions stepwise. Two of the most commonly used heuristics in 
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this role are Simulated Annealing and Tabu Search, each of which searches locally to for 

improvements to the currently generated schedule.  

 Simulated Annealing techniques depend upon a large number of solutions, which 

randomly are traded for other ‘nearby’ solutions. Better solutions are generally preferred, 

and as the algorithm progresses, the preference for better solutions increases, until the 

algorithm is simply stepping to the local optimum. Similarly, Tabu search allows for an 

algorithm to pass into infeasible territory, if the objective function can be improved by 

doing so, by providing a penalty function associated with the infeasibility. As the 

algorithm progresses, it increases the penalty to achieve an effective hard feasibility.  

  

Q-Machine Scheduling Summary 

 The solutions to Q-Machine scheduling expose us to the idea of prioritization 

rules which allow for the solution of the problem for particular objective functions. These 

methods are not effective for solution subject to the specific criteria of vehicle 

minimization, but they provide a starting place for the development of our own rules and 

solution index. 

 Simulated annealing and the Tabu search show us the next potential stage of the 

development of the research, which is to develop a refining algorithm, along Tabu, 

simulated annealing, or evolutionary algorithm lines and use it to refine the solution into 

a specific high quality solution. The difficulty in implementing such a solution lies in the 

complexity of handling hundreds or thousands of large scale solutions to the problem. 

Without those, the refinement the heuristics can provide is minimal; with them, the 

algorithm becomes cumbersome. 
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Pragmatic Instance Summary 

 In this paper, the particular problem we are studying is the M++RP problem, at 

large scales. The particular instance of the problem which is being discussed which we 

are using as a pragmatic instance of our general problem is a Troop Phased Force 

Deployment Data, or TPFDD. A TPFDD consists of a large number of transportation 

requirements, from a number of sources to a number of sinks, across a defined network. 

The development of transportation requirements and vehicle numbers required to move 

them is an interactive multi-stage process, as the number of vehicles themselves 

necessitate infrastructure and movement capacity at the vehicle level. According to 

Clausewitz’ Principles of War, “The provisioning of troops, no matter how it is done, 

whether through storehouses or requisitions, always presents such difficulty that it must 

have a decisive influence on the choice of operations.” 

 As a consequence, it is of particular importance to be able to quickly generate 

reasonable estimates as to the number of vehicles of various types required to execute a 

TPFDD, as generating these estimates will most likely be required multiple times, in a 

feedback process with both analysts and decision-makers. However, a TPFDD is 

remarkably large; as many as ten thousand transportation requirements (customers), 

across a network of as many as several hundred nodes, with multiple modalities, over the 

course of weeks or even months, subject to constraints on earliest and latest arrival, as 

well as to constraints on infrastructure for offloading that will be available, and 

potentially to many other over-riding constraints which are beyond the scope of this 

model. 
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 It is a priority in all strategic situations to ensure that all deadlines and earliest 

arrival dates are met, subject to feasibility; the number of vehicles used is secondary to 

the accomplishment of the purpose behind the TPFDD, which may rely on any particular 

requirement or any subset of them being performed to requirements. For this reason, the 

algorithm generated here must prioritize first that all deadlines are met and only as a 

secondary concern handle the vehicle minimization techniques. 

  With that caveat, the solution of a vehicle minimization problem requires a 

complete solution for the problem including vehicle allocations and paths, because of the 

interaction of infrastructure capacity requirements. Because of this, and because any 

given solution will tend to depend on the number of vehicles available, the problem must 

be solved multiple times during any particular attempt to minimize the vehicle numbers. 

At the very least it must be solved once for each mode. This places an even higher 

priority upon high processing speed than was already necessitated by the size of the 

problem and the requirement for interactive feedback. 

 In the particular problem being studied it is noteworthy that the shipments will 

nearly always require multiple vehicles to carry; this allows for certain simplifications 

and changes of emphasis in the details of our algorithm. It is also worth noting that since 

the particular scope of the TPFDD is in-theater, in our application we are unlikely to find 

a solution that requires transshipment from one mode to another; instead, despite the 

multi-modal nature of the problem, we may with reasonable safety confine ourselves to 

the use of single modes for the duration of the trip, assuming the cost and availability of 

transshipment to be prohibitive. 
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Chapter Review 

 Our final summary concludes that the particular computational complexity of the 

large scale M++RP requires an approach which is computationally simple, as in the Q-

Machine scheduling priority rules, applied to a simplified problem generated according to 

the decompositional rules used for smaller Vehicle Routing Problems. With the 

combination of these two techniques, we can drastically reduce the calculation time 

required for the generation of a feasible solution, without sacrificing unduly the 

optimality of our solution. The interactivity of our pragmatic instance specifically 

encourages this, as the solutions are intended as springboards for analytical thought, 

rather than implementable final answers.  

 With this sort of rough-cut approach to a problem of this computational 

complexity, the emphasis must be placed upon reducing the processing time required to 

handle the problem. Without careful management of processing time, we run the risk of 

an impractical or impossible technique, which will fail to generate the timely, effective 

solutions required. 

 For this reason, our ultimate implementation relies upon a series of priority rules, 

applied in careful order to the shipments, and solved in a specific order in order to 

preserve feasibility, while minimizing vehicle number requirements. 
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III.  Methodology 

 

Broad Analysis of the Algorithm 

 At the highest level, the algorithm consists of three major steps. First, the 

incoming data is separated into a network component and a shipping requirements 

component. Second, the network component is processed using Dijkstra’s algorithm, to 

create a network of shortest paths. Finally, the scheduling heuristic assigns the shipping 

requirements to the simplified network at need. This organizational hierarchy will serve 

as the structure for this chapter, as we follow the flow of data processing throughout the 

algorithm. 

 

Data Inputs 

 The algorithm requires three different major data components. The first of these 

components is the network itself. The network is composed of a series of nodes, with 

associated distances between them, and a value for the daily unloading capacity of the 

nodes in the units which are later used for shipment weight. Each of these distances and 

unloading capacities must be defined for each mode. In the case of a node-node pairing 

which cannot be travelled by a specific mode, it is possible to assign a ‘big M’ value for 

the transportation distance in order to force the shipment onto a higher-cost, but feasible, 

mode of transport. However, doing so can only cause the algorithm to transfer the 

shipments upward in cost. 
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 The second component of data required is vehicle information. The algorithm 

requires data on vehicle speed, capacity, and the number of modes. This must parallel the 

number of parallel modal networks provided. These data are used throughout the 

algorithm. Speed, particularly, is used in all three major components of the scheduling 

heuristic, either directly or indirectly. 

 The third component of data is shipping requirements. Shipping requirements are 

stored as a series of lists. Instead of directly manipulating the data associated with the 

shipment, the algorithm uses the number of the shipment as a serial. Moving only integer 

values reduces the time required to sort and generate lists significantly. 

 

Dijkstra’s Algorithm 

 Dijkstra’s algorithm is used in place of a more complicated routing solver in order 

to approximate the ideal routes for vehicles. The shortest paths generated by Dijkstra’s 

are good approximations if the vehicles are generally required to return to their depot 

after delivery to only one site. If this is held to be so, the routing problem becomes 

generally the problem of travelling from point A to point B to point A as efficiently as 

possible. This is equivalent to the shortest path problem. 
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Figure 2. Dijkstra’s Algorithm 

 Dijkstra’s algorithm is a very efficient algorithm for solving the shortest path 

problem, provided that the distance desired is from each node in a network to each other 

node in the same network. It works by expanding upon paths of known distances and 

tracking the shortest path discovered to each node. At each step, it advances to the next 

nearest node to the origin node. It records any nodes for which the shortest known path is 

longer than the distance to the current node from the origin node, plus the distance from 

the current node to the observed node. It then corrects their distances down to the newly 

discovered shortest path. Finally, it advances to the node which is the next closest to the 

origin node, after the currently selected node. 

Scheduling Heuristic Overview 

 The scheduling heuristic used in this algorithm is ultimately the core of the entire 

procedure. Dijkstra’s algorithm can be viewed as a pre-processing stage that puts the 

input into a form conducive to the use of the scheduling heuristic. The scheduling 

heuristic bears special attention, especially as it comprises the majority of the complexity 

of the algorithm as well as the key part of its function. 
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 The scheduling heuristic has four key parts; these are: Deadline Assignment, 

Infrastructure Assignment, Vehicle Assignment, and the Correction Step. Deadline 

Assignment and Infrastructure Assignment can be viewed as pre-processing steps, 

Vehicle Assignment as the core step, and the Correction Step as a post-processing 

method. However, each of these steps will be iterated once for each mode, as the overall 

heuristic determines the minimum number of vehicles required for only one mode at a 

time.  

 

Figure 3. Scheduling Heuristic Overview 

 

Scheduling Heuristic Inputs 

 The inputs for the scheduling heuristic have two sources. The first is Dijkstra’s 

algorithm, mentioned above, which provides us with a simplified network of shortest 

paths for use in the calculation of distances throughout the heuristic. The second is the 
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shipping requirements component of the original data, which is passed on in the form of a 

list of shipment numbers and a series of associated lists detailing arrival date, shipment 

size, and deadline, all accessible using the shipment number as a serial. The algorithm 

also acquires the vehicle data directly from the original listing. 

Deadline Assignment 

 Deadline analysis is the simplest of the four stages of the scheduling heuristic, and 

the quickest. In deadline analysis, each of the shipments has a time-available value 

calculated, which is simply the difference between arrival date for the shipment and the 

deadline date. This is the amount of time that a shipment is available for shipping. We 

compare this value to the speed of each mode and the distance for that mode between the 

source and sink for the shipment, then, add the amount of time required to unload the 

shipment. A mode for which distance/speed plus unload time is greater than the time 

available certainly cannot carry a given shipment. As a consequence, we know that the 

shipment must be moved higher in cost- to a faster mode. 

 Deadline analysis serves two functions simultaneously. First, it ensures that 

shipments which would be required to run on a more expensive mode for reasons of 

available time are assigned upwards earlier. This saves the time of calculating that they 

must be pushed up during the more computationally intensive infrastructure assignment 

stage. Second, it ensures that these shipments cannot cause other shipments to be forced 

upwards during the infrastructure stage. 

 When a shipment’s cheapest potentially feasible mode has been determined by the 

deadline function, it is assigned to a list associated with that mode. There is a list for each 



 

25 
 

mode at the end of the deadline stage and each shipment will be in one, and only one, of 

those lists. These lists form the input for the Infrastructure Assignment stage of the 

algorithm. 

 

Infrastructure Assignment 

 Infrastructure Assignment can be viewed as another preprocessing stage of the 

algorithm. However, it is also fair to consider the Infrastructure Assignment stage as the 

stage of the algorithm wherein the unloading constraints are taken into consideration. 

While unloading is considered at the Vehicle Assignment stage as well, it is at this stage 

that it is most likely to cause a shipment to be moved or bumped from a mode, as 

opposed to simply forcing rescheduling. In other words, this is the stage where overall 

capacity of infrastructure unloading is taken into account. 

 This is achieved using a 2-dimensional array of doubles. Because we handle each 

mode separately, it is not necessary to maintain the full node-mode-day pairing for 

tracking unloading. Instead, we simply track the node-day pairing for the mode which is 

currently being analyzed. 

 The algorithm starts from the earliest arrival date, and begins to check through the 

list of shipments assigned to the particular mode. As it iterates through the shipments, if it 

finds any shipment with the arrival date it is currently searching for, it attempts to assign 

them immediately to the mode. If it fails, it adds them to the list for the next most 

expensive mode. If there is no more expensive mode, the shipment is retained at this 

mode. After processing through the list once, it increases the arrival date by one and 
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processes through again. This is repeated until all shipments have been processed through 

the system. 

 Processing based upon earliest arrival date is known as the EAD priority rule. 

This rule has several advantages. Primarily, it ensures that the infrastructure begins work 

as early as possible. That is to say that since no shipment can arrive prior to the shipments 

with the earliest arrival date, if they are the first shipments assigned, we can guarantee 

minimal lead-time, which helps in reducing wasted processing time. 

 EAD is approximately equivalent to the First Come First Served rule, which is 

intuitively a very efficient means of ensuring that the infrastructure is efficiently used. 

The primary failing of FCFS and EAD is relative to rules such as Shortest Processing 

Time or Weighted Shortest Processing Time. EAD is efficient at ensuring the maximum 

possible tonnage is carried, but does not account for weighting across tonnages. 

Fortunately, in our case, it is assumed that all shipments have equally inviolate priority. 

 The process of assignment for infrastructure is a relatively simple one. Each 

shipment is taken in order, and the algorithm searches the array to attempt to find space to 

unload it. At this point, we do not concern ourselves with vehicles. However, we do add 

the constraint that no shipment can be unloaded before its arrival time plus time of travel 

to the unloading point. 

 In order to search the array for the appropriate amount of time, we first calculate 

the time required for unloading. This is simply the size of the shipment divided by 

unloading capacity. We then find our start point, which is the arrival time for the 

shipment plus the travel time required on the mode in use. Finally, we iterate from this 

point to the deadline for the shipment, summing all free time we find. 
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 The array of doubles used to track the amount of free infrastructure capacity is 

made up of double representations of the amount of capacity free on any given day. Each 

value is between 0 and 1. If the value is 0, the day is completely free. If the value is 1, the 

day is completely full. Any value other than these two represents a partially used day. The 

algorithm adds the remaining portion of the day for each day between the start time and 

the deadline, except the first. For that day, it adds the remainder only if the already 

allocated portion of the day is larger than travel time. This prevents the shipment from 

being treated as unloading while it is still in travel. 

 If the algorithm finds sufficient space for the unloading of the shipment, then the 

shipment is added to the output list for this mode. If it does not, then it is added to the 

output list for the next most expensive mode. It is not necessary at this stage for the 

loading to be contiguous, as the specifics of assignment are handled at the vehicle 

assignment stage. 

 

Vehicle Assignment 

 The vehicle assignment algorithm is the core of the scheduling heuristic. It 

receives a list of shipments which must be assigned to the most expensive mode from the 

infrastructure assignment component, and it converts that list into both a detailed 

schedule and a requirement in terms of number of vehicles. Because it is so essential, and 

because it is complex, it merits a more detailed look than either the deadline or 

infrastructure components of the heuristic. 
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 The vehicle assignment algorithm uses the same method of selection for 

shipments as the infrastructure method. It chooses them based on earliest arrival date, 

tracking down through the assigned list, iterating each arrival date in turn. 

 Once the shipment has been chosen, the algorithm first determines the number of 

vehicles necessary to carry the shipment. This is the size of the shipment divided by the 

capacity of the vehicle, rounded upwards. The algorithm then begins the search for 

appropriate vehicle and unloading space for the shipment. 

 The first step in this process is identifying a free space on a vehicle. Much as in 

the infrastructure array, we use an array of doubles to track the usage of the vehicles. 

Unlike in the infrastructure array, however, we must seek to gain continuous use of the 

vehicle for the full duration of the trip. So rather than simply beginning at our starting 

point and proceeding to deadline, summing the free space, we use a rather more 

complicated summation process. We begin at the arrival day for the shipment and iterate 

through the chosen vehicle’s days. If we find a day that is empty, we add 1 to our 

currently found free time. If we find a day that is not empty, we add the remainder of its 

capacity to our currently found free time. If, after adding the new capacity, the free time 

found is greater than the amount needed, we mark our original start time as an 

appropriate start time for the shipment-component and proceed to the infrastructure 

correction step. If not, we set our total free time equal to the remainder, and set the 

current day as our start time. 

 If we fail to identify a free spot large enough to carry the shipment and our 

vehicle isn’t one that was generated just for this shipment, then we generate a new 
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vehicle to carry the shipment. If the vehicle was generated just for this shipment, then we 

ignore the deadline limitation and assign the shipment as late, if necessary. 

 If, however, we identify a free spot in the vehicles where the shipment could be 

carried, we must now confirm that there is infrastructure available to unload the shipment 

in the appropriate place. This process is identical to the process for finding free space on 

a vehicle, except that new infrastructure cannot be generated. If we find ourselves pushed 

past the deadline on infrastructure, we instead simply must assign past the deadline. 

 If the start time found by the vehicle-search is confirmed by the unload-search, 

then we may add it to our list and begin searching for vehicle and unload space for the 

next shipment-component. However, if it is not, we find the next start time available 

among the vehicles, starting at the one suggested by our unload-search. If the start time 

required correction, we repeat the process until the shipment is assigned.  

 If at any time we are forced to use a new vehicle, we track the number of this 

vehicle. The last vehicle we are forced to generate is the minimum number of vehicles 

required to service this set of requirements. 

 Finally, when we have found appropriate start times for all the components of a 

shipment, we allocate the shipment and fill the capacity in the unload and vehicle arrays. 

It is at this point that we remove the shipment from the shipment requirements array, to 

represent that it has been assigned. 
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Correction Step 

 The correction step is the final process in the scheduling heuristic. In this stage, 

the algorithm uses the same search procedures used in the vehicle assignment stage, 

iterating through all unassigned shipments in EAD order. However, if it fails to find 

capacity, it simply moves on to the next shipment, rather than generating a new vehicle. 

 It treats the number of vehicles generated by the vehicle assignment step as a 

capacity on the amount of flow the vehicles are capable of handling. However, if a 

shipment can be assigned, it is assigned and deleted from the shipment list. 



 

31 
 

 

IV.  Results and Analysis 

 

Simple Test Case 

 In order to examine the capabilities of the algorithm, a series of test cases were 

created. The test cases were deliberately chosen for ease of solution, in order to make 

comparison against an intuitive or obvious perfect solution, simple for the reader. In the 

first case, our study case is hyper-simplified and consists of only 5 shipments, each with a 

three-day gap between arrival and delivery, arriving at the same source node, one per day, 

over a five day period, all of which are destined for the same sink node. 

 For simplicity's sake, this example deals in only one mode and the sizes of the 

five shipments are equal to the capacity of the vehicles, resulting in exactly one shipment 

being carried by each vehicle per trip. The vehicle was given a speed of 100, and the 

distance between nodes 1 and 2 was set to 100; also, the unloading capacity for the sink 

node was set to 100, to simplify displaying the outcome. 
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1. Simple Test Case Data Input 

Shipment Size Source Sink Arrival Deadline 

1 100 1 2 1 4 

2 100 1 2 2 5 

3 100 1 2 3 6 

4 100 1 2 4 7 

5 100 1 2 5 8 

 

 The algorithm returned the following as a feasible resolution of the system, 

determining that the number of vehicles required for such a solution was three. 

2. Simple Test Case Results Output 

Shipment Start Time Arrival Time Vehicle Number Ahead of 
Deadline 

1 1 4 1 Yes 

2 2 5 2 Yes 

3 3 6 3 Yes 

4 4 7 1 Yes 

5 5 8 2 Yes 

 

 Examining the above solution, it is possible to chart the assignments which each 

of the three vehicles had for the duration of the transportation solution; for clarity, the 

chart is shown below. 
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3. Simple Test Case Vehicle Schedule 

Vehicle Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 

1 S1 
delivery 

S1 unload S1 return S4 
delivery 

S4 unload S4 return Idle 

2 Idle S2 
delivery 

S2 unload S2 return S5 
delivery 

S5 unload S5 return 

3 Idle Idle S3 
delivery 

S3 unload S3 return Idle Idle 

 

Modified Simple Case 

 The algorithm, then, is capable of achieving an intuitive result on a small scale. 

Given that this test case is equivalent to the case where all shipments can be carried on a 

single cheapest mode, that data shall not be repeated here. However, a secondary 

component of the algorithm which bears examination is its capacity to compensate for a 

shipment being forced onto a high cost mode, by utilizing the idle capacity of that mode 

to the greatest extent possible. As a consequence, our second test case, the modified 

simple case, will change the base case in two ways. First, it will add a second mode, 

considered more expensive than the first, which travels at a rate of 200 units per day, with 

identical independent unloading capacity to the first mode. Second, it will change the 

deadline on the first shipment to 2. 

Because the first shipment has a deadline of 2, it is impossible for it to be 

delivered by the deadline using the first or second modes, and so it will be forced to 

travel on the second mode in order to minimize the violation of the deadline 

(guaranteeing a minimum number of vehicles for the second mode of at least one). 

However, the rest of the vehicle's time is not accounted for, and so we must allocate as 
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many shipments as possible to the idle time on that vehicle in order to minimize the 

number of lower cost vehicles used. 

 In this instance, the utilization of the mode allows for two additional shipments to 

be handled by the most expensive mode, on the same vehicle that is handling the first 

shipment, resulting in two fewer vehicles being required on the first mode. 

4. Modified Simple Case Data Input 

Shipment Size Source Sink Deadline 

S1 100 1 2 2 

S2 100 1 2 5 

S3 100 1 2 6 

S4 100 1 2 7 

S5 100 1 2 8 

 

 In this case, it is worth detailing the differences between the two modes, as well as 

their similarities: 

5. Modified Simple Case Vehicle Data 

Vehicle Capacity Unload Rate Speed 

1 100 100 100 

2 100 100 200 
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 The chart of our delivery times, travel times, and vehicle pairings is given below, 

and below that, the chart of the vehicle time-assignments is given. 

6. Modified Simple Case Shipment Schedule 

Shipment Start Time Arrival Time Vehicle Number Ahead of 
Deadline 

S1 1 2.5 1 (Mode 2) No 

S2 3 4.5 1 (Mode 2) Yes 

S3 3 5 1 (Mode 1) Yes 

S4 5 6.5 1 (Mode 2) Yes 

S5 6 8 1 (Mode 1) Yes 

 

 Because the second mode performs deliveries in one half-day, the pattern is that 

on the 'outgoing' day, the travel is completed outgoing, and half of the unloading is done, 

and on the next day, the remainder of the unloading is completed, and then the shipment 

is returned. 

7. Modified Simple Case Vehicle Schedule 

Vehicle Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day7 
1 (Mode 2) S1 Out S1 Return S2 Out S2 Return S4 Out S4 Return Idle 
1 (Mode 1) Idle Idle S3 Out S3 

Deliver 
S3 Return S5 Out S5 

Deliver 
 

 This demonstrates the capacity of the algorithm to combine minimization 

techniques in order to reduce the impact of forced increases in the number of high-cost 

vehicles being deployed, by utilizing those new, largely idle, vehicles in order to decrease 
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the number of vehicles required at lower tiers. Of course, in a more complex problem, 

resolutions will be substantially more complicated to come by, and in most cases, less 

efficient, and less obviously so. However, the general principle of efficient allocation still 

holds in more complex cases. 

 

Multinodal, Multimodal Demonstration Case 

 The complexity of the algorithm, and its potency, rests upon its capacity to deal 

efficiently, and quickly, with problems that handle both multiple sources and sinks, and 

multiple modes, on large scale, but of course it is difficult to demonstrate efficiency in the 

large scale, because by-hand and intuitive solutions are hard to come by. Instead, we 

examine the efficacy of the algorithm using a smaller multimodal, multinodal pattern. 

 In this instance, our case involves three modes, over four nodes, each equidistant 

at 100 units from each other node, and each capable of unloading 100 units per day from 

each mode. For this problem, the speeds for our three vehicle types are 50, 100, and 200 

units and the capacities are the same. We will process twelve shipments across the nodes, 

using nodes 1 and 2 solely as sources, and nodes 3 and 4 solely as sinks. The sum of all 

tonnage shipped is 2400 and the arrival times and deadlines are broadly separated, 

allowing for a powerful estimate of 2400/10 or 240 tons per day of shipping power being 

a floor on the number of tons per day of vehicle required to handle the shipping. 

 Of course, at this tier of processing, the outputs become significantly more 

complicated. As a consequence, we will simply list the vehicle number, node, start time, 

and mode for each shipment and shipment-component.   
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8. Multimodal Simple Case Data Input 

Shipment 
No. 

Source Sink Size Arrival Deadline 

1 1 3 100 1 7 
2 2 3 200 1 7 
3 1 4 300 1 7 
4 2 4 100 1 7 
5 1 3 200 3 10 
6 2 3 300 3 10 
7 1 4 100 3 10 
8 2 4 200 3 10 
9 1 3 300 1 7 

10 2 3 100 1 7 
11 1 4 200 3 10 
12 2 4 300 3 10 

 

 

 

This list is not the original data output from the program, but has been sorted to 

highlight both the process behind the assignment of shipments to specific vehicles and a 

problem induced by the specific granularity of the shipments. Note that the shipments fit 

neatly together, as regards unloading. This is due to the algorithm’s deliberate seeking of 

gaps at every stage of a schedule’s creation, resulting in carefully stacked shipment 

unloading times. Of course, this method is aided by the uniformity of vehicle unload-

times, which are in the algorithm artificially held constant, as a relationship between the 

size of vehicle, and the capacity for unloading that particular vehicle at that particular 

node. Nonetheless, the algorithm has finely used all available unloading space in this 

limited example. 

A notable, potential error is the double-booking effect visible in the use of mode 

2, node 3 unloading capacity. Shipment-components are being loaded simultaneously, 

resulting in unloading times taking up the same block, theoretically. This, of course, is an 
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impossibility according to the strict rules of the problem. The shipments, according to our 

previous assumptions, use all unloading capacity totally and therefore cannot be unloaded 

simultaneously. 

The cause of this apparent error is double-booking. The shipments are both 

attempting to use the latter half of the first day on which they both arrive, and the first 

half of the next day. As the algorithm does not have sufficient granularity to track half-

days, the shipments are nominally double-booking. 

The next table shows the data with a view to the particular assignments made to 

specific vehicles at specific times. Notably, it sorts by mode, then vehicle number, and 

then start-time, in order to demonstrate the relative efficiency and inefficiency of 

allocation according to the algorithm. 

In this case, the algorithm generates an essentially perfect solution to the system, 

using virtually every open space, and the result is intuitively near-optimal. For mode 1, 

each vehicle can handle at most 3 assignments (as it requires three days to deliver any in 

particular, and the latest deadline is day 10). From this we know that, at least, we would 

need 5 vehicles, as we have 14 shipments. Shipment 7, our last shipment, has a deadline 

on day 7, and so it is apparent it could not easily be transferred to vehicle 4 or 5 with the 

shipment loads as they currently stand. While it is conceivable that a more efficient 

solution exists, the solution generated by the algorithm is intuitively near-optimal, at least 

for mode 1. On mode 2, we simply observe that both vehicles are identically full. 
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9. Multimodal Simple Case Shipment Output 

Shipment Vehicle Start Time Mode Sink 
2 1 1 1 3 
2 1 4 1 3 
8 1 7 1 4 
3 2 1 1 4 
3 2 4 1 4 
8 2 8 1 4 
3 3 2 1 4 
4 3 5 1 4 

11 3 9 1 4 
9 4 2 1 3 
9 4 5 1 3 
9 5 3 1 3 

11 5 6 1 4 
7 6 3 1 4 

10 1 1 2 3 
6 1 3 2 3 
6 1 5 2 3 
6 1 7 2 3 

12 1 9 2 4 
1 2 1 2 3 

12 2 3 2 4 
12 2 5 2 4 
5 2 7 2 3 
5 2 9 2 3 

 

 To compare to our earlier values, we have 6 vehicles of type 1, shipping 100 units 

every 3 days, and 2 vehicles of type 2, shipping 100 units every 2 days, for a total of 300 

units of shipping capacity. This compares favorably to our lower bound estimate of 240 

tons as an absolute minimum, given the effects of infrastructure interference and the 

uneven effect of making trips of duration 3 days during a space of 10 days. 
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Multimodal Large Scale Case 

In order to test the algorithm’s capacity to perform at large scale, a new shipping 

requirement list was created for the multimodal simple case. In this expansion of the 

original problem, we extrapolated the original data set to one hundred shipments, and 

extended the infrastructure capacity of the underlying network to handle 100,000 units 

per node per day, in order to ensure feasibility. 

Solution of the problem required approximately five seconds. The data that was 

returned indicated that 212 vehicles were required to handle the shipping, all of the same 

mode, which approximately conforms to expectations. Given that infrastructure and 

deadline limitations were not concerns, all shipments should have been processed on the 

first mode. This was indeed the case. 

Determining whether the solution was ultimately feasible would require detailed 

comparison of each shipment to each other shipment and to the overall infrastructure 

capacity and vehicle usage charts, in order to confirm the validity of the original result, 

but a superficial examination reveals start times which increase slowly as the 

infrastructure begins to fill. 

A second attempt was made to process the same set of shipments, using 

infrastructure of only 100 per day. This resulted in massive over-flow, as predicted, over-

flowing the limited 2-dimensional array for unloading.
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Appendix A: Shortest Path Network Generator 

Sub simplifynetwork() 

    Dim n As Integer 

    Dim i As Integer 

    Dim SourceNode As Integer 

    Dim NetworkSheet As String 

    Dim numnodes As Integer 

    NetworkSheet = ActiveSheet.Name 

    SourceNode = 1 

    n = 1 

    i = 1 

    j = 1 

    Sheets(NetworkSheet).Activate 

    Range("A1").Select 

    Do While ActiveCell.Offset(n, 0).Value <> 0 

        n = n + 1 

    Loop 

        numnodes = n - 1 

        Sheets.Add.Name = "Simplified " & NetworkSheet 

        Sheets.Add.Name = "Simplified " & NetworkSheet & " Paths" 

    Do While SourceNode <= numnodes 

        DijkstrasAlgorithm SourceNode, numnodes, NetworkSheet 

        SourceNode = SourceNode + 1 

    Loop 

    Sheets("Simplified " & NetworkSheet & " Paths").Activate 
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    ActiveCell.Value = "Nodes" 

    Do While i <= numnodes 

        ActiveCell.Offset(0, i) = Str(i) 

        ActiveCell.Offset(i, 0) = Str(i) 

        i = i + 1 

    Loop 

    Sheets("Simplified " & NetworkSheet).Activate 

    ActiveCell.Value = "Nodes" 

    Do While j <= numnodes 

        ActiveCell.Offset(0, j) = Str(j) 

        j = j + 1 

    Loop 

End Sub 
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Sub DijkstrasAlgorithm(SourceNode As Integer, numnodes As Integer, NetworkSheet As 
String) 

    Dim CurrentNode As Integer               

    Dim CurrentDist As Double                

    Dim AmDone As Boolean                    

    Dim ShortestDist() As Double             

    Dim BigM As Double                       

    Dim n As Integer                         

    Dim i As Integer                         

    Dim j As Integer                       

    Dim CurrentLowDist As Double             

    Dim CurrentLowNode As Integer            

    Dim FoundUnexplored As Boolean           

    Dim K As Integer                         

    Dim DistOnThisPath As Double             

    Dim ShortestPath() As String             

    Dim p As Integer                                 

    AmDone = False 

    CurrentNode = SourceNode 

    CurrentDist = 0 

    BigM = 1E+300 

    n = 1 

    ReDim ShortestDist(1 To numnodes) 

    ReDim ShortestPath(1 To numnodes) 

    Do While n <= numnodes 

        ShortestDist(n) = BigM 
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        ShortestPath(n) = Str(SourceNode) 

        n = n + 1 

    Loop 

    ShortestDist(SourceNode) = 0 

    Do While AmDone = False 

        i = 1 

        Do While i <= numnodes 

            DistOnThisPath = finddist(CurrentNode, i, NetworkSheet) + 
ShortestDist(CurrentNode) 

            If DistOnThisPath < ShortestDist(i) Then 

                ShortestDist(i) = DistOnThisPath 

                ShortestPath(i) = ShortestPath(CurrentNode) & Str(i) 

            End If 

            i = i + 1 

        Loop 

        j = 1 

        CurrentLowDist = BigM 

        FoundUnexplored = False 

        Do While j <= numnodes 

            If ShortestDist(j) > CurrentDist Then 

                If ShortestDist(j) < CurrentLowDist Then 

                    CurrentLowDist = ShortestDist(j) 

                    CurrentLowNode = j 

                    FoundUnexplored = True 

                End If 

            ElseIf ShortestDist(j) = CurrentDist Then 

                If CurrentNode < j Then 
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                    CurrentLowDist = ShortestDist(j) 

                    CurrentLowNode = j 

                    FoundUnexplored = True 

                End If 

            End If 

            j = j + 1 

        Loop 

        If FoundUnexplored = False Then 

            AmDone = True 

        ElseIf FoundUnexplored = True Then 

            CurrentNode = CurrentLowNode 

            CurrentDist = CurrentLowDist 

        End If 

    Loop 

    Sheets("Simplified " & NetworkSheet).Activate 

    ActiveSheet.Range("A1").Select 

    K = 1 

    Do While ActiveCell.Offset(K, 0).Value <> 0 

        K = K + 1 

    Loop 

    ActiveCell.Offset(K, 0) = SourceNode 

    l = 1 

    Do While l < numnodes + 1 

        ActiveCell.Offset(K, l) = ShortestDist(l) 

        l = l + 1 

    Loop 
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    Sheets("Simplified " & NetworkSheet & " Paths").Activate 

    ActiveSheet.Range("A1").Select 

    p = 1 

    Do While p < numnodes + 1 

        ActiveCell.Offset(K, p) = ShortestPath(p) 

        p = p + 1 

    Loop    

End Sub 

 

 

Function finddist(SourceNode As Integer, sinknode As Integer, NetworkSheet As String) 

    Sheets(NetworkSheet).Activate 

    ActiveSheet.Range("A1").Select 

    finddist = CDbl(ActiveCell.Offset(SourceNode, sinknode).Value) 

End Function 
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Appendix B: Ordered Scheduling Heuristic 

 

Public NumNodes As Integer 

Public NumModes As Integer 

Public numshipments As Integer 

Public SimpleNetwork() As Variant 

Public minvehicles() As Integer 

Public latedeadline As Integer 

Public highestused As Integer 

Public ShArrival() As Variant 

Public ShDeadline() As Variant 

Public vehiclespeeds() As Variant 

Public shsize As Variant 

Public shsink As Variant 

Public shsource As Variant 

Public vcapacity As Variant 

Public shUnloadTime() As Double 

Public shipmentarray() As Integer 

Public shipmentarraynum As Integer 

Public vunloadtime() As Double 

Public index As Integer 

Public shtraveltime() As Double 
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Sub HeuristicScheduler() 

    Dim NumShipArray As Integer 

    Dim DeadlineArray() As Integer 

    Dim DeadlineTracker() As Integer 

    Dim infraarray() As Integer 

    Dim infratracker() As Integer 

    Dim n As Integer 

    Dim mode As Integer 

    Popglobals 

    PopulateSimpleNetwork 

    index = 1 

    ReDim shUnloadTime(1 To NumModes, 1 To numshipments) 

    ReDim shipmentarray(1 To numshipments) 

    shipmentarraynum = numshipments 

    n = 1 

        Do While n <= numshipments 

        shipmentarray(n) = n 

        n = n + 1 

    Loop  

    mode = NumModes 

    Do While mode > 0 

        DeadlineArrayGenerator shipmentarray(), shipmentarraynum, DeadlineArray(), 
DeadlineTracker() 

        InfraArrayGenerator DeadlineArray(), DeadlineTracker(), infraarray(), infratracker() 

        ListVehicAssign infraarray(), infratracker(), mode 
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        eliminateshipments infraarray(), infratracker(), mode, shipmentarray(), 
shipmentarraynum 

        mode = mode - 1 

    Loop 

End Sub 
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Sub eliminateshipments(infraarray() As Integer, infratracker() As Integer, mode As 
Integer, shipmentarray() As Integer, shipmentarraynum As Integer) 

    Dim n As Integer 

    Dim k As Integer 

    Dim elim As Boolean 

    elim = False 

    n = 1 

    k = 1 

    Do While n <= infratracker(mode) 

        Do While k <= shipmentarraynum And elim = False 

            If infraarray(mode, n) = shipmentarray(k) Then 

                elim = True 

                shipmentarray(k) = shipmentarray(shipmentarraynum) 

                shipmentarraynum = shipmentarraynum - 1 

            End If 

            k = k + 1 

        Loop 

        elim = False 

        k = 1 

        n = n + 1 

    Loop 

End Sub 
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Sub ListVehicAssign(infraarray() As Integer, infratracker() As Integer, mode As Integer) 

    Dim n As Integer 

    Dim VehicAssignArray() As Double 

    Dim unloadarray() As Double 

    Dim currmode As Integer 

    ReDim VehicAssignArray(1 To minvehicles(mode), 1 To latedeadline) 

    ReDim unloadarray(1 To NumNodes, 1 To latedeadline) 

    highestused = 0 

    n = 1 

    Do While n <= infratracker(mode) 

        ShipmentVehicAssign VehicAssignArray(), infraarray(mode, n), mode, 
unloadarray(), highestused 

        n = n + 1 

    Loop 

    minvehicles(mode) = highestused 

    If mode > 1 Then 

        listgapcheck VehicAssignArray(), infraarray(), infratracker(mode - 1), mode, 
unloadarray() 

    End If 

End Sub 
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Sub listgapcheck(VehicAssignArray() As Double, ShipmentList() As Integer, infranum 
As Integer, currmode As Integer, unloadarray() As Double) 

    Dim n As Integer 

    Dim found As Boolean 

    Dim currvehicle As Integer 

    n = 1 

    Do While n <= infranum 

        ShipmentGapCheck VehicAssignArray(), ShipmentList(), n, infranum, currmode, 
unloadarray() 

        n = n + 1 

    Loop 

End Sub 
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Sub ShipmentGapCheck(VehicAssignArray() As Double, ShipmentList() As Integer, 
ShipmentNumber As Integer, infranum As Integer, mode As Integer, unloadarray() As 
Double) 

    Dim currvehicle As Integer 

    Dim found As Boolean 

    Dim currstart As Double 

    Dim starttimes() As Double 

    Dim foundvehicles As Integer 

    Dim vehicles() As Integer 

    Dim shipment As Integer 

    Dim i As Integer 

    Dim j As Integer 

    Dim elim As Boolean 

    Dim pseudounloadarray() As Double 

    Dim l As Integer 

    Dim k As Integer 

    Dim traveltime As Double 

    ReDim pseudounloadarray(1 To NumNodes, 1 To latedeadline) 

    shipment = ShipmentList(mode - 1, ShipmentNumber) 

    traveltime = SimpleNetwork(mode)(shsource(shipment), shsink(shipment)) / 
vehiclespeeds(mode) 

    currvehicle = 1 

    l = 1 

    k = 1 

    Do While l <= NumNodes 

        Do While k <= latedeadline 

            pseudounloadarray(l, k) = unloadarray(l, k) 
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            k = k + 1 

        Loop 

        k = 1 

        l = l + 1 

    Loop 

    If shsize(shipment) / vcapacity(mode) - Int(shsize(shipment) / vcapacity(mode)) > 0 
Then 

        neededvehicles = Int(shsize(shipment) / vcapacity(mode)) + 1 

    Else 

        neededvehicles = Int(shsize(shipment) / vcapacity(mode)) 

    End If 

    ReDim vehicles(1 To neededvehicles) 

    ReDim starttimes(1 To neededvehicles) 

    Do While currvehicle <= minvehicles(mode) And foundvehicles < neededvehicles 

        If foundvehicles > 0 Then 

            If vehicles(foundvehicles) = currvehicle Then 

                currstart = starttimes(foundvehicles) + vunloadtime(mode, shsink(shipment)) + 
2 * SimpleNetwork(mode)(shsource(shipment), shsink(shipment)) / vehiclespeeds(mode) 

            Else 

                currstart = 0 

            End If 

        Else 

            currstart = 0 

        End If 

        found = True 

        corrected = True 

        Do While found = True And corrected = True 
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            found = findstarttime(VehicAssignArray(), mode, starttimes(foundvehicles + 1), 
currvehicle, currstart, shipment) 

            corrected = correctstarttime(pseudounloadarray(), mode, starttimes(foundvehicles 
+ 1), currvehicle, found, shipment, currstart) 

        Loop 

        If found = True Then 

            foundvehicles = foundvehicles + 1 

            allocate starttimes(foundvehicles) + traveltime, pseudounloadarray(), 
shsink(shipment), vunloadtime(mode, shsink(shipment)) 

            vehicles(foundvehicles) = currvehicle 

            n = n + 1 

        Else 

            currvehicle = currvehicle + 1 

            corrected = True 

            found = True 

        End If 

    Loop 

    i = 1 

    If foundvehicles >= neededvehicles Then 

        Do While i <= neededvehicles 

            allocshipvehic starttimes(i), vehicles(i), shipment, VehicAssignArray(), 
unloadarray(), mode 

            i = i + 1 

        Loop 

        j = 1 

        Do While j <= infranum And elim = False 

            If shipmentarray(j) = shipment Then 

                shipmentarray(j) = shipmentarray(shipmentarraynum) 
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                shipmentarraynum = shipmentarraynum - 1 

                elim = True 

            End If 

            j = j + 1 

        Loop 

    End If 

End Sub 
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Sub ShipmentVehicAssign(VehicAssignArray() As Double, shipment As Integer, mode 
As Integer, unloadarray() As Double, highestused As Integer) 

    Dim neededvehicles As Integer 

    Dim n As Integer 

    Dim i As Integer 

    Dim starttimes() As Double 

    Dim found As Boolean 

    Dim corrected As Boolean 

    Dim currstart As Double 

    Dim vehicles() As Integer 

    Dim currvehicle As Integer 

    Dim pseudounloadarray() As Double 

    Dim j As Integer 

    Dim k As Integer 

    Dim temphighestused As Integer 

    Dim traveltime As Double 

    ReDim pseudounloadarray(1 To NumNodes, 1 To latedeadline) 

    traveltime = SimpleNetwork(mode)(shsource(shipment), shsink(shipment)) / 
vehiclespeeds(mode) 

    j = 1 

    k = 1 

    Do While j <= NumNodes 

        Do While k <= latedeadline 

            pseudounloadarray(j, k) = unloadarray(j, k) 

            k = k + 1 

        Loop 
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        k = 1 

        j = j + 1 

    Loop 

    If shsize(shipment) / vcapacity(mode) - Int(shsize(shipment) / vcapacity(mode)) > 0 
Then 

        neededvehicles = Int(shsize(shipment) / vcapacity(mode)) + 1 

    Else 

        neededvehicles = Int(shsize(shipment) / vcapacity(mode)) 

    End If 

    ReDim starttimes(1 To neededvehicles) 

    ReDim vehicles(1 To neededvehicles) 

    n = 1 

    currvehicle = 1 

    temphighestused = highestused 

    Do While n <= neededvehicles 

        corrected = True 

        found = True 

        If foundvehicles > 0 Then 

            If vehicles(foundvehicles) = currvehicle Then 

                currstart = starttimes(foundvehicles) + vunloadtime(mode, shsink(shipment)) + 
2 * SimpleNetwork(mode)(shsource(shipment), shsink(shipment)) / vehiclespeeds(mode) 

            Else 

                currstart = 0 

            End If 

        Else 

            currstart = 0 

        End If 



 

59 
 

        Do While corrected = True And found = True 

            found = findstarttime(VehicAssignArray(), mode, starttimes(n), currvehicle, 
currstart, shipment) 

            corrected = correctstarttime(pseudounloadarray(), mode, starttimes(n), 
currvehicle, found, shipment, currstart) 

        Loop 

        If found = True Or currvehicle > temphighestused Then 

            vehicles(n) = currvehicle 

            foundvehicles = foundvehicles + 1 

            allocate starttimes(n) + traveltime, pseudounloadarray(), shsink(shipment), 
vunloadtime(mode, shsink(shipment)) 

            If vehicles(foundvehicles) > temphighestused Then 

                temphighestused = vehicles(foundvehicles) 

            End If 

            n = n + 1 

        Else 

            currvehicle = currvehicle + 1 

            currstart = 0 

            corrected = True 

            found = True 

        End If 

    Loop 

    i = 1 

    Do While i <= neededvehicles 

        If shipment = 3 Then 

            shipment = shipment 

        End If 
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        allocshipvehic starttimes(i), vehicles(i), shipment, VehicAssignArray(), 
unloadarray(), mode 

        i = i + 1 

    Loop 

    If vehicles(neededvehicles) > highestused Then 

        highestused = vehicles(neededvehicles) 

    End If 

End Sub 



 

61 
 

 

Sub allocshipvehic(starttime As Double, vehicle As Integer, shipment As Integer, 
VehicAssignArray() As Double, unloadarray() As Double, mode As Integer) 

    Dim reqvehictime As Double 

    Dim requnloadtime As Double 

    Dim allocvehictime As Double 

    Dim allocunloadtime As Double 

    Dim currtime As Double 

    Dim timetransfervariable As Double 

    Dim currday As Integer 

    Sheets("Output").Range("A1").Offset(index, 0) = shipment 

    Sheets("Output").Range("A1").Offset(index, 1) = vehicle 

    Sheets("Output").Range("A1").Offset(index, 2) = starttime 

    Sheets("Output").Range("A1").Offset(index, 3) = mode 

    Sheets("Output").Range("A1").Offset(index, 4) = shsink(shipment) 

    index = index + 1 

    reqvehictime = SimpleNetwork(mode)(shsource(shipment), shsink(shipment)) / 
vehiclespeeds(mode) * 2 + vunloadtime(mode, shsink(shipment)) 

    requnloadtime = vunloadtime(mode, shsink(shipment)) 

    currday = Int(starttime) 

    allocvehictime = 0 

    Do While allocvehictime < reqvehictime 

        timetransfervariable = 1 

        If timetransfervariable > (1 - starttime + currday) Then 

            timetransfervariable = 1 - starttime + currday 

        End If 

        If timetransfervariable > 1 - VehicAssignArray(vehicle, currday) Then 
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            timetransfervariable = 1 - VehicAssignArray(vehicle, currday) 

        End If 

        If timetransfervariable > reqvehictime - allocvehictime Then 

            timetransfervariable = reqvehictime - allocvehictime 

        End If 

        VehicAssignArray(vehicle, currday) = VehicAssignArray(vehicle, currday) + 
timetransfervariable 

        allocvehictime = allocvehictime + timetransfervariable 

        currday = currday + 1 

    Loop 

    currday = Int(starttime + SimpleNetwork(mode)(shsource(shipment), 
shsink(shipment)) / vehiclespeeds(mode)) 

    Do While allocunloadtime < requnloadtime 

        timetransfervariable = requnloadtime - allocunloadtime 

        If timetransfervariable > (1 - starttime - SimpleNetwork(mode)(shsource(shipment), 
shsink(shipment)) / vehiclespeeds(mode) + currday) Then 

            timetransfervariable = (1 - starttime - SimpleNetwork(mode)(shsource(shipment), 
shsink(shipment)) / vehiclespeeds(mode) + currday) 

        End If 

        If timetransfervariable > 1 - unloadarray(shsink(shipment), currday) Then 

            timetransfervariable = 1 - unloadarray(shsink(shipment), currday) 

        End If 

        unloadarray(shsink(shipment), currday) = unloadarray(shsink(shipment), currday) + 
timetransfervariable 

        allocunloadtime = allocunloadtime + timetransfervariable 

        currday = currday + 1 

    Loop 

End Sub 
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Function correctstarttime(infraassignarray() As Double, mode As Integer, starttime As 
Double, currvehicle As Integer, found As Boolean, shipment As Integer, currstart As 
Double) 

    Dim currunloadtime As Double 

    Dim currday As Integer 

    Dim traveltime As Double 

    Dim availtime As Double 

    Dim curravailtime As Double 

    traveltime = SimpleNetwork(mode)(shsource(shipment), shsink(shipment)) / 
vehiclespeeds(mode) 

    currunloadtime = starttime + traveltime 

    currday = Int(currunloadtime) 

    Do While availtime < vunloadtime(mode, shsink(shipment)) And currday < 
latedeadline 

        curravailtime = 1 

        If 1 - infraassignarray(shsink(shipment), currday) < curravailtime Then 

            curravailtime = 1 - infraassignarray(shsink(shipment), currday) 

        End If 

        If 1 - (currunloadtime - currday) < curravailtime Then 

            curravailtime = 1 - (currunloadtime - currday) 

        End If 

        availtime = availtime + curravailtime 

        If infraassignarray(shsink(shipment), currday) > 0 And availtime < 
vunloadtime(mode, shsink(shipment)) Then 

            currunloadtime = currday + infraassignarray(shsink(shipment), currday) 

            currday = currday + 1 

            availtime = currday - currunloadtime 

        End If 
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    Loop 

    If currunloadtime = starttime + traveltime Then 

        correctstarttime = False 

    Else 

        correctstarttime = True 

        currstart = currunloadtime - traveltime 

    End If 

    If availtime >= vunloadtime(mode, shsink(shipment)) And currunloadtime + 
vunloadtime(mode, shsink(shipment)) <= ShDeadline(shipment) + 1 Then 

        found = True 

    Else 

        found = False 

    End If 

End Function 
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Function findstarttime(VehicAssignArray() As Double, mode As Integer, starttime As 
Double, currvehicle As Integer, currstart As Double, shipment As Integer) 

    Dim currtime As Double 

    Dim currday As Integer 

    Dim reqtime As Double 

    Dim availtime As Double 

    Dim curravailtime As Double 

    If ShArrival(shipment) > currstart Then 

        currtime = ShArrival(shipment) 

    Else 

        currtime = currstart 

    End If 

    currday = Int(currtime) 

    reqtime = SimpleNetwork(mode)(shsource(shipment), shsink(shipment)) / 
vehiclespeeds(mode) * 2 + vunloadtime(mode, shsink(shipment)) 

    Do While availtime < reqtime And currday < latedeadline 

        curravailtime = 1 

        If 1 - VehicAssignArray(currvehicle, currday) < curravailtime Then 

            curravailtime = 1 - VehicAssignArray(currvehicle, currday) 

        End If 

        If 1 - (currtime - currday) < curravailtime Then 

            curravailtime = 1 - (currtime - currday) 

        End If 

        availtime = availtime + curravailtime 

        If VehicAssignArray(currvehicle, currday) > 0 And availtime < reqtime Then 

            availtime = 1 - VehicAssignArray(currvehicle, currday) 
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            currtime = currday + VehicAssignArray(currvehicle, currday) 

        End If 

        currday = currday + 1 

    Loop 

    starttime = currtime 

    If availtime >= reqtime And starttime + SimpleNetwork(mode)(shsource(shipment), 
shsink(shipment)) / vehiclespeeds(mode) + vunloadtime(mode, shsink(shipment)) < 
ShDeadline(shipment) + 1 Then 

        findstarttime = True 

    Else 

        findstarttime = False 

    End If 

End Function 
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Sub InfraArrayGenerator(DeadlineArray() As Integer, DeadlineTracker() As Integer, 
infraarray() As Integer, infratracker() As Integer) 

    Dim n As Integer 

    ReDim infraarray(1 To NumModes, 1 To numshipments) 

    ReDim infratracker(1 To NumModes) 

    n = 1 

    Do While n <= NumModes 

        InfraAssignStep DeadlineArray(), DeadlineTracker(), infraarray(), infratracker(), n 

        n = n + 1 

    Loop 

End Sub 
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Sub InfraAssignStep(DeadlineArray() As Integer, DeadlineTracker() As Integer, 
infraarray() As Integer, infratracker() As Integer, currmode As Integer) 

    Dim infraassignarray() As Double 

    Dim n As Integer 

    Dim currarrival As Integer 

    Dim i As Integer 

    Dim shipment As Integer 

    ReDim shtraveltime(1 To numshipments) 

    ShDeadline = 
Application.WorksheetFunction.Transpose(Sheets("Shipments").Range("F2", 
Sheets("Shipments").Range("F2").End(xlDown))) 

    ShArrival = 
Application.WorksheetFunction.Transpose(Sheets("Shipments").Range("E2", 
Sheets("Shipments").Range("E2").End(xlDown))) 

    shsink = Application.WorksheetFunction.Transpose(Sheets("Shipments").Range("C2", 
Sheets("Shipments").Range("C2").End(xlDown))) 

    populatetraveltime currmode, shtraveltime(), shsink 

    n = 1 

    latedeadline = 0 

    Do While n <= numshipments 

        If ShDeadline(n) > latedeadline Then 

            latedeadline = ShDeadline(n) 

        End If 

        If ShArrival(n) > latearrival Then 

            latearrival = ShArrival(n) 

        End If 

        n = n + 1 

    Loop 
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    latedeadline = latedeadline * 2 

    ReDim infraassignarray(1 To NumNodes, 1 To latedeadline) 

    i = 1 

    currarrival = 1 

    Do While currarrival <= latearrival 

        Do While i <= DeadlineTracker(currmode) 

            shipment = DeadlineArray(currmode, i) 

            If currarrival = ShArrival(shipment) Then 

                found = findspace(shipment, infraassignarray(), shtraveltime(shipment) + 
ShArrival(shipment), ShDeadline(shipment), shsink(shipment), 
shUnloadTime(currmode, shipment)) 

                If found = True Or currmode = NumModes Then 

                    allocate ShArrival(shipment) + shtraveltime(shipment), infraassignarray(), 
shsink(shipment), shUnloadTime(currmode, shipment) 

                    infratracker(currmode) = infratracker(currmode) + 1 

                    infraarray(currmode, infratracker(currmode)) = DeadlineArray(currmode, i) 

                    found = False 

                Else 

                    DeadlineTracker(currmode + 1) = DeadlineTracker(currmode + 1) + 1 

                    DeadlineArray(currmode + 1, DeadlineTracker(currmode + 1)) = 
DeadlineArray(currmode, i)                     

                End If 

            End If 

            i = i + 1 

        Loop 

        i = 1 

         

        currarrival = currarrival + 1 
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    Loop 

End Sub 



 

71 
 

 

Sub populatetraveltime(mode As Integer, traveltime() As Double, sink As Variant) 

    Dim n As Integer 

    vehiclespeeds = 
Application.WorksheetFunction.Transpose(Sheets("Vehicles").Range("B2", 
Sheets("Vehicles").Range("B2").End(xlDown))) 

    shsource = 
Application.WorksheetFunction.Transpose(Sheets("Shipments").Range("B2", 
Sheets("Shipments").Range("B2").End(xlDown))) 

    n = 1 

    Do While n <= numshipments 

        traveltime(n) = SimpleNetwork(mode)(shsource(n), sink(n)) / vehiclespeeds(mode) 

        n = n + 1 

    Loop 

    n = 1 

End Sub 
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Sub populateneededtime(mode As Integer, sink As Variant) 

    Dim n As Integer 

    Dim infraarray() As Variant 

    Dim transfervariable As Variant 

    Dim j As Integer 

    Dim k As Integer 

    ReDim infraarray(1 To NumModes) 

    ReDim vunloadtime(1 To NumModes, 1 To NumNodes) 

    shsize = Application.WorksheetFunction.Transpose(Sheets("Shipments").Range("D2", 
Sheets("Shipments").Range("D2").End(xlDown))) 

    j = 1 

    Do While j <= NumModes 

        With Sheets("Network " & j & " Infra").Range("B2") 

            transfervariable = Application.WorksheetFunction.Transpose(Range(.Offset(0, 0), 
.End(xlDown))) 

        End With 

        infraarray(j) = transfervariable 

        k = 1 

        Do While k <= NumNodes 

            vunloadtime(j, k) = vcapacity(mode) / infraarray(j)(k) 

            k = k + 1 

        Loop 

        j = j + 1 

    Loop 

    n = 1 

    Do While n <= numshipments 
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        shUnloadTime(mode, n) = shsize(n) / infraarray(mode)(sink(n)) 

        n = n + 1 

    Loop 

End Sub 
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Function findspace(shipment As Integer, infraassignarray() As Double, startpoint As 
Double, deadline As Variant, sink As Variant, neededtime As Double) 

    Dim foundtime As Double 

    Dim currday As Integer 

    currday = Int(startpoint) 

    Do While foundtime < neededtime And currday <= deadline 

        foundtime = 1 - infraassignarray(sink, currday) + foundtime 

        If 1 - (startpoint - currday) < foundtime Then 

            foundtime = 1 - (startpoint - currday) 

        End If 

        currday = currday + 1 

    Loop 

    If foundtime >= neededtime Then 

        findspace = True 

    Else 

        findspace = False 

    End If 

End Function 
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Sub allocate(startpoint As Double, infraassignarray() As Double, sink As Variant, 
neededtime As Double) 

    Dim remainingtime As Double 

    Dim currday As Integer 

    Dim transfertime As Double 

    currday = Int(startpoint) 

    remainingtime = neededtime 

    Do While remainingtime > 0 

        transfertime = remainingtime 

        If transfertime > 1 - infraassignarray(sink, currday) Then 

            transfertime = 1 - infraassignarray(sink, currday) 

        End If 

        If transfertime > currday + 1 - startpoint Then 

            transfertime = currday + 1 - startpoint 

        End If 

        infraassignarray(sink, currday) = infraassignarray(sink, currday) + transfertime 

        remainingtime = remainingtime - transfertime 

        currday = currday + 1 

    Loop 

End Sub 
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Sub Popglobals() 

    Dim vehicleestimate As Integer 

    Dim i As Integer 

    Dim mode As Integer 

    numshipments = Sheets("Shipments").Range("A1", 
Sheets("Shipments").Range("A1").End(xlDown)).Rows.Count - 1 

    NumModes = Sheets("Vehicles").Range("A1", 
Sheets("Vehicles").Range("A1").End(xlDown)).Rows.Count - 1 

    NumNodes = Sheets("Simplified Network 1").Range("A1", Sheets("Simplified 
Network 1").Range("A1").End(xlDown)).Rows.Count - 1 

    shsize = Application.WorksheetFunction.Transpose(Sheets("Shipments").Range("D2", 
Sheets("Shipments").Range("D2").End(xlDown))) 

    vcapacity = 
Application.WorksheetFunction.Transpose(Sheets("Vehicles").Range("C2", 
Sheets("Vehicles").Range("C2").End(xlDown))) 

    vehicleestimate = 0 

    i = 1 

    mode = 1 

    ReDim minvehicles(1 To NumModes) 

    Do While mode <= NumModes 

        Do While i <= numshipments 

                If shsize(i) / vcapacity(mode) > 1 Then 

                vehicleestimate = vehicleestimate + shsize(i) / vcapacity(mode) 

            Else 

                vehicleestimate = vehicleestimate + 1 

            End If 

            i = i + 1 

        Loop 
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        i = 1 

        minvehicles(mode) = Int(vehicleestimate * 2) 

        mode = mode + 1 

        vehicleestimate = 0 

    Loop 

End Sub 
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Sub DeadlineArrayGenerator(shipmentarray() As Integer, NumShipArray As Integer, 
DeadlineArray() As Integer, DeadlineTracker() As Integer) 

    Dim n As Integer 

    Dim mode As Integer 

    Dim FeasArray() As Integer 

    ReDim DeadlineArray(1 To NumModes, 1 To NumShipArray) 

    ReDim DeadlineTracker(1 To NumModes) 

    ReDim FeasArray(1 To numshipments) 

    n = 1 

    DetFeas FeasArray() 

    Do While n <= NumShipArray 

        mode = FeasArray(shipmentarray(n)) 

        DeadlineTracker(mode) = DeadlineTracker(mode) + 1 

        DeadlineArray(mode, DeadlineTracker(mode)) = shipmentarray(n) 

        n = n + 1 

    Loop 

End Sub 
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Sub DetFeas(FeasArray() As Integer) 

    Dim shsource As Variant 

    Dim shsink As Variant 

    Dim ShArrival As Variant 

    Dim ShDeadline As Variant 

    Dim vehiclespeeds As Variant 

    Dim found As Boolean 

    Dim n As Integer 

    Dim k As Integer 

    Dim i As Integer 

    ReDim FeasArray(1 To numshipments) 

    shsource = 
Application.WorksheetFunction.Transpose(Sheets("Shipments").Range("B2", 
Sheets("Shipments").Range("B2").End(xlDown))) 

    shsink = Application.WorksheetFunction.Transpose(Sheets("Shipments").Range("C2", 
Sheets("Shipments").Range("C2").End(xlDown))) 

    ShArrival = 
Application.WorksheetFunction.Transpose(Sheets("Shipments").Range("E2", 
Sheets("Shipments").Range("E2").End(xlDown))) 

    ShDeadline = 
Application.WorksheetFunction.Transpose(Sheets("Shipments").Range("F2", 
Sheets("Shipments").Range("F2").End(xlDown))) 

    vehiclespeeds = 
Application.WorksheetFunction.Transpose(Sheets("Vehicles").Range("B2", 
Sheets("Vehicles").Range("B2").End(xlDown))) 

    i = 1 

    Do While i <= NumModes 

        populateneededtime i, shsink 

        i = i + 1 
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    Loop 

    n = 1 

    k = 1 

    Do While n <= numshipments 

        Do While k < NumModes And found = False 

            If SimpleNetwork(k)(shsource(n), shsink(n)) / vehiclespeeds(k) + 
shUnloadTime(k, n) <= ShDeadline(n) - ShArrival(n) + 1 Then 

                found = True 

                FeasArray(n) = k 

            End If 

            k = k + 1 

        Loop 

        If found = False Then 

            FeasArray(n) = k 

        End If 

        found = False 

        k = 1 

        n = n + 1 

    Loop 

End Sub 
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Sub PopulateSimpleNetwork() 'This converts the simple networks generated by Dijkstras 
algorithm into arrays, for speed. 

    Dim i As Integer 

    Dim transfervariable() As Variant 

    ReDim SimpleNetwork(1 To NumModes) 

    i = 1 

    Do While i <= NumModes 

        With Sheets("Simplified Network " & i).Range("B2") 

            transfervariable = Range(.Offset(0, 0), .End(xlDown).End(xlToRight)) 

        End With 

        SimpleNetwork(i) = transfervariable() 

        i = i + 1 

    Loop 

End Sub 
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